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Recently, it has been shown that interaction of small olefins
and carbon monoxide on zeolite H-ZSM-5 in the presence of
water (the Koch reactid?) results in high conversion of an
olefin into a carboxylic acid at 296 K.The procession of the
Koch reaction on a zeolite under mild conditi®nsan be
reasonably explained (by analogy with acidic solutfgis
through the trapping of an alkyl carbenium ion, generated from
an olefin (or alcohol) inside a zeolite, by CO to form an acylium
cation?4 The latter is quenched with water to give a carboxylic
acic®* (see Schemel, pathway 1). However, in the absence of
water, one could expect that the generatieds{tu) acylium
cation would interact with another olefin molecule to give an
unsaturated ketorfe.

In this paper, we report that, under waterless conditions,
olefins (ethene, isobutene, 1-octene) indeed interact with CO
on H-ZSM-5 at 296 K to give unsaturated ketones and stable
cyclic five-membered ring carboxonium ions (pathway 2 in
Scheme 1). Thus, we have obtained the first evidence for the
Friedel-Crafts acylation of alkené$ in zeolite catalyst at
ambient temperature by acylium cation, generatesitu from
olefins and CO.

A well-characterized H-ZSM-5 zeolite (Si/A= 49) was
activated by heating at 45@ under vacuum (1@ Torr) for 4
h. Then, we froze out equal amounts of olefin and CO on
H-ZSM-5 under vacuum at liquid nitrogen temperature. After
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Figure 1. 3C CP/MAS NMR spectra for the products formed at 296
K after coadsorption of an olefin and CO on H-ZSM-5 zeolite: (A)
coadsorption of the unlabeled isobutene &#2O (90%°C enrich-
ment); (B) coadsorption of the unlabeled isobutene and unlabeled CO;
(C) coadsorption of the unlabeled ethene &i@D; (D) coadsorption

of the ethenet-'3C (90% *°C enrichment) and unlabeled CO; (E) after
the sample (A) was kept for 1 month under air atmosphere at ambient
temperature. Approximately 3Qamol/g (ca 1 equiv per Al atom) of
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the glass tube containing the zeolite sample under vacuum wagan olefin and CO were adsorbed in each case; 1528000 scans
sealed, the sample was slowly warmed to room temperature and'@ve been collected for each spectrum. Asterisks (*) denote spinning

kept at 296 K for a few hours allowing the reaction to proceed.
The reaction products were analyzed directly inside the zeolite
sample with'3C CP/MAS NMR in a sealed glass tube inserted
into the NMR zirconia rotor. In addition, we dissolved the
zeolite framework and then analyzed the liberated organic
products with GC-MS andC NMR.
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Figure 1 report$3C CP/MAS NMR spectra recorded after

coadsorption of olefins and carbon monoxide on H-ZSM-5. If

13C-labeled CO and unlabeled isobutene are used for coadsorp-
tion (Figure 1A), then two intense signals at 225 and 250 ppm
from the 13C-labeled carbonyl group are observed; their line
shapes with numerous spinning sidebands differ from those of
unreacted®CO. The small-intensity narrow line frofiCO is

seen in this spectrum at 185 p@niThe signals at 225 and 250

ppm indicate that the reaction between isobutene and CO

(9) The narrow line at 185 ppm without spinning sidebands from
unreacted3CO can especially be well seen in the spectra recorded without
cross-polarization for all coadsorbed olefins and CO (these spectra are not
shown). The chemical shift 8CO is in good accordance with that observed
earlier inside H-ZSM-5. (a) Anderson, M.W.; Klinowski, J. Am. Chem.

Soc 1990 112 10-16. (b) Munson, E. J.; Lazo, N. D.; Moellenhoff, M.
E.; Haw, J. FJ. Am. Chem. Sod 991, 113,2783-2784.
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proceeds on the zeolite at 296 K al¥6O transforms intd3C- The observed carbonylation/acylation processes are inevitably
labeled carbonyl group of some organic product. The signals complicated by oligomerization reaction, which usually gives
from aliphatic moieties (naturdfC abundance) in the reaction rise to long-chain oligomers in the absence of €OHence,
products are seen at 20 ppm. the reaction of carbon monoxide with olefin oligomers (linear
In principle, interaction of acylium cation with olefins in the  for ethene and 1-octene) should result in the acylation products
presence of acid catalysts (known as Fried®tafts acylation with long hydrocarbon fragmentsRnd R (R, R, = Cp Hant,
of alkene®) can proceed via two different routes (see Scheme wheren = 4).
1). One of them leads to the formation of unsaturated ketdnes.  Note that there no signals appear from tire@double bond
The situation is proven to be the same for the zeolite catalyst. of unsaturated keton&s(see Figure 1B, D). We believe that
One of the signals shown in Figure 1A, at 225 ppm, can be the situation may be similar to that existing for oligomers formed
attributed to the carbonyl group of unsaturated ketones that isat ambient temperature from small olefins on acidic zeolite.
either strongly interacting with the Bnsted acid site of the  These oligomers exhibit no characteristic signals from the double
zeolite or partially protonatedf:** Indeed, liquid unsaturated  pond moiety in theif3C NMR spectra&?24
ketones exhibit*C chemical shifts between 195 and 215 pfm. |t e zeqlite sample is exposed to atmospheric moisture, both
If the interaction of the carbonyl group of ketones adsorbed in gjonais at 225 and 250 ppm slowly decrease, and finally, two
zeolite additionally moving the signal downfield a maximum groups of the signals at 186 and 217 ppm are identified in the

of 19 ppm is taken into accouHtthen the position of the signall spectrum (Figure 1E). The former signal shows that the
at 225 ppm for unsaturated ketones seems reasonable. At th arboxylic acids are formed,and the latter one may be

ia{ne t'm&tﬁ"e" under.g\ c?rr]nplehtitp;rotonaélon ?f unsaturateiernreted as an upfield shift of the signal at 225 ppm from
e On%S '23 1e s%pﬁ_rﬁm S, tne sni cf)rthcar _onyl gtr%‘é% NEVET nsaturated ketones resulting from the penetration of water in
exceeds 2ol pprt. 1he appearance ot the signal a PPM 7 e0lite pores, which destroys the strong interaction of ketone

for the carbonyl groups is easily rationalized in terms of the .01 aroup with Biosted acid sites. Note that the interac-
second competing pathway of 5!03"3“0” reaction resulting in 4y, of carboxonium ion with water inside zeolite does not result
the formation of garboxonlumllo‘h, the signal from the to the formation of oxyketones, as was observed earlier for the
CarEE“y' group with the positive charge on oxygen Stom transformation of these cyclic ions in solutidhsThe signals
(-O'=C)in suc_:h cations being opsewed near-2250 ppn: from COH fragments of oxyketones would be located near 70
For CO and isobutene, both with natutiC abundance, the pm25 Addition of water into the zeolite seems to shift the

signal at 123 ppm provides further evidence for the formation gqjipria in Scheme 1 toward the acylium cation, from which
of cyclic five-membered ringcarboxonium ion. An alternative carboxylic acids are formed

to this cyclic carboxonium ion is noncyclitor six- or seven- i . . .

membered cycli carboxonium ions, but they are not identified . | © confirm the formation of the acylation products on zeolite,

for coadsorbates used in this stu]é),/ the sample with coadsorbed isobutene and CO was dissolved
. ) o ; ;

For the coadsorption of CO and ethene (Figure 1C, D) or in 10% NaOH solution. - After the_ formed solution was
l-octene (spectrum is not shown), the same signals areneutrahzed with HSO, and the organic products were subse-
observed: 250 and 112 ppm for cyclic carboxonium $asd quently extracted with &0, and the excess ether was evapo-
295 pom for unsaturated ketones rated, GC-MS and3C high-resolution NMR analyses of the

PP : residue were carried out. These analyses revealed that C

. Thus_, we have obtained evidence for CYC"C carboxonium ion unsaturated ketonesg Gxyketones (the products of hydrolysis
(in addition to already known alkyl-substituted cyclopentenyl of both unsaturated ketones and cyclic carboxonium ions), and

617 ; L o
catiorf®*and trimethyloxonium iot) to be generated inside the equilibrium products of their reverse aldol condensation

acidic zeolite. It should be noted that none of the signals ! ' . S
. . . . reaction (acetone andsQGliphatic ketones) prevailed in the
observed in Figure 1 can be attributed either dfkgr acylium mixture educed from H-ZSM-5. Carboxylic acids and olefin

cationg that are included in Scheme 1 as intermediates. They : .
represent highly reactive transient species inside the zé&blite. oligomers were also among the malq rgactlon productg.
Thus, our NMR experiments clearly indicate that the Friedel
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